Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver.
نویسندگان
چکیده
In an in vitro study, the cytochrome P-450 3A (CYP3A)-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-Co A reductase inhibitors lovastatin and pravastatin were compared. Lovastatin was metabolized by human liver microsomes to two major metabolites: 6'beta-hydroxy [Michaelis-Menten constant (Km): 7.8 +/- 2.7 microM] and 6'-exomethylene lovastatin (Km,10.3 +/- 2.6 microM). 6'beta-Hydroxylovastatin formation in the liver was inhibited by the specific CYP3A inhibitors cyclosporine (Ki, 7.6 +/- 2.3 microM), ketoconazole (Ki, 0.25 +/- 0.2 microM), and troleandomycin (Ki, 26.6 +/- 18.5 microM). Incubation of pravastatin with human liver microsomes resulted in the generation of 3'alpha,5'beta, 6'beta-trihydroxy pravastatin (Km, 4,887 +/- 2,185 microM) and hydroxy pravastatin (Km, 20,987 +/- 9,389 microM). The formation rates of 3'alpha,5'beta,6'beta-trihydroxy pravastatin by reconstituted CYP3A enzymes were (1,000 microM pravastatin) 1.9 +/- 0.6 pmol.min-1.pmol CYP3A4 and 0.06 +/- 0.04 pmol.min-1.pmol CYP3A5, and the formation rates of hydroxy pravastatin were 0.12 +/- 0.02 pmol.min-1.pmol CYP3A4 and 0.02 +/- 0.004 pmol.min-1.pmol CYP3A5. The specific CYP3A inhibitors cyclosporine, ketoconazole, and troleandomycin significantly inhibited hydroxy pravastatin formation by human liver microsomes, but only ketoconazole inhibited 3'alpha, 5'beta,6'beta-trihydroxy pravastatin formation, suggesting that other CYP enzymes are involved in its formation. It is concluded that, compared with lovastatin [CLint formation 6'beta-hydroxylovastatin (microl.min-1.mg-1): 199 +/- 248, 6'-exomethylene lovastatin: 138 +/- 104)], CYP3A-dependent metabolism of pravastatin [CLint formation 3'alpha,5'beta, 6'beta-trihydroxy pravastatin (microl.min-1.mg-1): 0.03 +/- 0.03 and hydroxy pravastatin: 0.02 +/- 0.02] is a minor elimination pathway. In contrast to lovastatin, drug interactions with pravastatin CYP3A-catalyzed metabolism cannot be expected to have a clinically significant effect on its pharmacokinetics.
منابع مشابه
Small intestinal metabolism of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor lovastatin and comparison with pravastatin.
We compared the intestinal metabolism of the structurally related 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors lovastatin and pravastatin in vitro. Human small intestinal microsomes metabolized lovastatin to its major metabolites 6'beta-hydroxy (apparent K(m) = 11.2 +/- 3.3 microM) and 6'-exomethylene (apparent K(m) = 22.7 +/- 9.0 microM) lovastatin. The apparent K(m) values were ...
متن کاملA comparison of the effects of 3-hydroxy-3-methylglutaryl-coenzyme a (HMG-CoA) reductase inhibitors on the CYP3A4-dependent oxidation of mexazolam in vitro.
HMG-CoA reductase inhibitors can be divided into two groups: those administered as the prodrug, i.e., the lactone form (e.g., simvastatin and lovastatin), and those administered in the active form, i.e., the acid form (e.g., pravastatin, fluvastatin, atorvastatin, and cerivastatin). In this study, the influence of the lactone and acid forms of various HMG-CoA reductase inhibitors on metabolism ...
متن کاملSex difference in inhibition of in vitro mexazolam metabolism by various 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors in rat liver microsomes.
To identify an appropriate animal model for the study of drug interaction via CYP3A4 inhibition, the inhibition of in vitro mexazolam metabolism by various 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors [simvastatin (lactone), simvastatin acid, fluvastatin, atorvastatin, cerivastatin, pravastatin lactone, and pravastatin (acid)] in male and female rat liver microsomes was ...
متن کاملTissue-selective acute effects of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase on cholesterol biosynthesis in lens.
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the key enzyme that regulates cholesterol synthesis, lower serum cholesterol by increasing the activity of low density lipoprotein (LDL) receptors in the liver. In rat liver slices, the dose-response curves for inhibition of [14C]acetate incorporation into cholesterol were similar for the active acid forms of lovastatin, s...
متن کاملPharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences.
Hypercholesterolaemia plays a crucial role in the development of atherosclerotic diseases in general and coronary heart disease in particular. The risk of progression of the atherosclerotic process to coronary heart disease increases progressively with increasing levels of total serum cholesterol or low density lipoprotein (LDL) cholesterol at both the individual and the population level. The s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 27 2 شماره
صفحات -
تاریخ انتشار 1999